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Abstract—The axisymmetric necking in a circular cylindrical specimen under uniaxial tension is analysed.
The “finite strain™ elastic-plastic constitutive models employed in this study encompass the classical
Jrfiow theory and a non-associated fiow theory of Gurson which approximately describes ductile fracture
on the microscale, For the former theory the comparison solid of Hill is additionally considered while the
comparison solids recently introduced by Raniecki are thoroughly analysed regarding the latter theory. The
imperfection-type approach is used via the direction integration of the finite element equations of
equilibrium. The location of the primary bifurcation point on the equilibrium path and the accuracy of its
estimation by means of the “comparison solid™ approach are discussed. The attention is focused on the bar
with shear-free ends but the results for the bar with ends cemented to rigid grips are also given.

1. INTRODUCTION

Plastic instability is a failure mechanism that is frequently observed in bodies under tensile
loading and in columns, plates and shells under compression. A great number of papers has
been written on this subject for both its practical importance and mathematical elegance.
Generally, two groups of methods exist for the analysis of instability phenomena which can be
classified as a bifurcational approach and a direct integration approach, respectively. Under the
idealized loading conditions, specimen geometry and material homogeneity instability of the
primary mode of deformation is usually associated with bifurcation from the fundamental
equilibrium path to a secondary equilibrium path. The Hill's theory of uniqueness and
stability in elastic-plastic solids provides an effective analytical tool to deal with such situa-
tions. Many publications can be cited with reference to problems posed in this way [1-8].

Unavoidable deviations from the perfect conditions often result in significant reductions of
the critical loads or strains, at which failure occurs. Therefore, it is important to know how
sensitive is the structure to different imperfection patterns [9-11).

Imperfect structural problems form simultaneously a starting point for the direct integration
approach to the instability analysis. According to this concept the nonlinear differential equa-
tions describing the behaviour of the imperfect structures are integrated in a step-by-step
manner leading to the overall force-displacement characteristics of the structure with some
singular points signalling the possible loss of stability. This method is costly and requires
repetitive computations for different imperfections, supplies however a very detailed in-
formation on the structural behaviour {12-16]. In particular, for problems with non-uniform
pre-critical response and for those requiring post-critical behaviour evaluation the direct
methods still seem to be superior to the bifurcational methods as the latter have so far been
effectively used in analysing some model structural configurations only and not in dealing with
real complex structures of engineering importance,

The Hill’s theory of bifurcation and uniqueness applies to a class of elastic-plastic materials
the most useful of which seems to be at present the so-called finite strain version of the J-flow
theory model. It is the model based upon the conventional plastic flow rule (normality rule)
associated with a smooth yield surface of von Mises kind and with the finite deformation effects
accounted for by including some convective terms in the definition of the stress rate [7, 17). It
was proved by Hill[1] that a “‘no unloading” comparison solid can be used (applying a quadratic
functional for testing for bifurcation) to vield a lower bound to the primary bifurcation load for
the genuine elastic-plastic solid described by the J,-flow theory and the bifurcations are
identical in many cases. This is an important result (provided the estimate so obtained is close
enough to the real bifurcation point) as the effective inclusion of the local unloading from the
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plastic flow can sometimes lead to serious difficuities in developing analytical or numerical
methods of plastic analysis.

The J-flow theory has found a widespread interest in application to different engineering
problems concerning uniqueness and stability such as necking in bars and sheets, bulging in
shells and buckling of columns. However, there exists at present some experimental evidence
that some void-containing metals (as well as some soil- and rock-like materials) do not obey the
normality rule. The elastic-plastic behaviour of such materials is expected to be better
described by non-associated plastic fiow laws which have been first discussed in [18].

Microscopic voids in ductile materials may play a crucial role in various problems of
inelastic instability. An approximate continuum representation of the response of a ductile
void-containing material can be obtained by accounting for the plastic dilatancy that will be the
apparent macroscopic effect of void growth. The inclusion of plastic dilatancy and of pressure
sensitivity of yield into elastic-plastic constitutive equations leads to a form of the general
relations describing non-associated plasticity. Of particular interest here is the approximate
constitutive theory developed by Gurson [19, 20) who specified the equations in detail on the
basis of some rigid-plastic computations for spherical void geometries. The theory of Gurson
has already been used in a number of investigations on various fracture mechanisms[21-25].
Here we are to use this theory in analysing the axisymmetric necking problem. However, the
necking mechanism is investigated by considering an elastic-plastic specimen containing a
non-uniform distribution of microscopic voids rather than having a shape imperfection. Further,
the nature of the necking-type bifurcation is studied by using some “comparison solids”
introduced recently in [26].

All the computations are carried out by means of the finite element method which is used
for the direct integration of the equations describing an imperfect axisymmetric specimen. To
this aim a special numerical procedure based upon the Newton-Raphson iteration scheme has
been developed as shortly described in Section 3. The paper closes with a detailed presentation
of the numerical results obtained for two sets of boundary conditions modelling the specimen
ends as either cemented to rigid grips or shear free.

2. CONSTITUTIVE RELATIONSHIP

The J-finite strain flow theory as well as its generalization proposed in [19, 20] for the
description of void-containing metals are shortly reviewed below. The formulation has a form
particularly suitable to the updated Lagrangian approach. Qur analysis is restricted to the
analysis of inelastic deformation processes for which the elastic part of strain is derivable from
the generalized Hooke’s law. This implicitly means that elastic strains are infinitesimal.

The three-dimensional form of the equations is presented only as its specialization to an
axisymmetric problem is straightforward and in the case of a voided material follows the lines
sketched in[24). For the sake of simplicity all the quantities below are referred to a cartesian
coordinate system fixed at the beginning of the current step.

The fundamental postulates we start with are the summability of the elastic d{f’ and plastic
d{p’ parts of the strain rate and the flow rule

d;= ':: 5ij (S G) 20
associated with von Mises yield condition
$ o0
¢=-;~9-!15‘,’-'L—1=0 22

where &; = rate of the second Piola-Kirchhoff stress tensor defined on the current (beginning
of the step) configuration; s; = normal to the yield surface defined as
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o-!j" = deviator of the Cauchy stress tensor gy, 0;; = &;; at the beginning of the step,

3 12
g= (i ci',-) a,?) , (2.9)
[= EE—EET’ 2.9)

E = Young modulus; E; = slope of the true stress-natural strain curve at stress level . The
J~flow theory generalized to finite strains is characterized by the following rate-type constitutive
equation

i = Lij du, Ly = Lug, Lia = Lie 2.6
in which d; = symmetric part of the velocity gradient,
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v = Poisson ratio,
K = bulk modulus,
G = elastic shear modulus,
{*={+§,~,'s.-,-=(+3G. (2.12)

It can be seen from eqns (2.6) and (2.7) [25], that the plastic strain rate can also be written as

@ o _Sulipdm, _ S0l _ _ swih
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with the fictitious *‘elastic " stress rate &; defined as

6% =L} dy. (2.14)
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Both the plastic strain rate definitions given by eqns (2.1) and (2.13) are of fundamental
significance in developing effective finite element algorithms for solving boundary-value prob-
lems; this will be further commented upon in Section 3.

The J-flow theory of plasticity has been recently generalized in [19,20,22] with the
intention to model process of ductile void growth in metals. The model does in fact belong to a
broader class of inelastic materials showing the effects of plastic dilatancy and flow non-
normality.

The approximate yield condition derived by Gurson [19, 20}, based on a rigid-perfectly plastic
upper bound solution for spherically symmetric deformations around a single spherical void, is of
the form

-"—'1—",'L+2fcosh( ) —(1+f)=0, 2.15)

in which oy is the macroscopic stress tensor, while f is the current void volume fraction. The
actual microscopic state of stress in the matrix material is represented by the equivalent tensile
flow stress o). The matrix material is taken to be plastically incompressible. Following
Needlemen and Rice [22], the rate of the current void volume fraction is given by the
expression

A

f=01-HdP+ (o +53‘$) (2.16)

where the first term describes the void growth while the other ones are responsible for the
stress controlled nucleation of voids. Here the void nucleation rate is represented in terms of
the parameter K which is the volume fraction of particles converted to voids per unit fractional
increase in stress. It has been suggested in [22] to take K of the order 0.01-0.1 for steel.

A number of further assumptions discussed in [22-25], for instances, leads to the plastic
flow rule of the form

193¢ (0¢ 8¢ K
df;"’ H 90 (60'H+ af 30' 8“') 2.17)
where
|9 o K ¢ o R}
H=-|3a-po+ (3 au+aam)‘(1-f)am]aa.-,-' (2.18)

The general non-associated plastic flow rule has usually been discussed [18, 26], in the form

dff = 7 sl (5% du) @19
in which
D
s'i,' = %ﬂ '\gg ijs (2.20)

L5, Q.21

It can readily be checked that eqn (2.17) reduces to the form (2.19) with s}, s} given by eqns
(2.20) and (2.21) if only we write out eqns (2.17) and (2.18) and define the parameters {, B and p
as
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_V3fs
B = 2 \/ ' (2'23)
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+ 2.24
Here
w=1+f-2fc (2.25)
is the square of the ratio of the macroscopic to microscopic equivalent yield strength
6_2
= (2.26)
and we have used the shortened notations
, s =sinhZ, ¢ =cosh 2. .27
2 oM

The standard derivation gives the constitutive relation of the non-associated plastic flow in the
form analogous to (2.6) and (2.7) as
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or, more explicitly, eqn (2.7)
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The condition for continued plastic deformation is now [24]
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Dealing with the J,-flow theory we have obtained two expressions for the plastic strain rate.
Equation (2.1) of the J-theory is seen to be a counterpart of eqn (2.19) of the Gurson's theory.
The counterpart of eqn (2.13) is now, clearly, eqn (2.29) and eqn (90) of [25]

2 1 (o) 2 =
@ _ o1 _ Skt Liimn dmn — ol Skt Okl
= Si ey ST L0, %~ S17+3G + 38K (2.35)

3. SOLUTION ALGORITHM

All the numerical results discussed below have been obtained by means of the finite element
computer system LARSTRAN at the Institute of Statics and Dynamics, University of
Stuttgart. The simple TRIAX 3 axisymmetric finite elements have been exclusively used; in the
course of many numerical experiments they were found sufficiently accurate in modelling the
problem under consideration, at least for the discretization mesh shown in Fig. 1 and used for
all the computations. The numerical algorithm is described below. For the sake of presentation
clarity the subsequent short discussion is confined to geometrically linear problems. However,
it remains to replace in the algorithm the elastic stiffness matrix K3 by the sum K + K%, the
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Fig. 1. Necking of a cylindrical specimen with buiit-in ends—J/rflow theory.
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second term being the initial stréss matrix, and to remember about appropriate geometry
updating and stress transformations, and the large deformation formulation is immediately
recovered.

The numerical algorithm will be described in terms of finite increments of particular functions
rather than in terms of their rates. Moreover, the quasi-static character of the analysis allows
the time-like parameter t to be identified with any one-parameter controlled set of variables
specific to the problem under consideration. In the case to be discussed these are the
y-displacements at nodal points 145-149, Fig. 1.

Let us write out the fundamental matrix equation of equilibrium as, eqn (2.29)

(K +"K¥)Arg=AR,+ " R,~"F,, o B=12,..,N (3.1
where
k=3 [ BiuBuLfiav, 62
elem. J Vyem.
- 5k 5h
K?p) == 2 B.'j, Bug =24V, (33)
elem. ¥ Vo ;‘

"R, = vector of nodal external loads at the beginning of the current step, AR, = vector of load
increments at the current step; Ar, = vector of nodal displacement increments; “F, = vector of
internal nodal forces equivalent to the element stresses at the beginning of the step;

°F,= 2_; - By, "a;dV, (3.49)
N = total number of degrees of freedom, and the geometric matrix B, is defined as
AE,‘; = d,‘j At= B,ia AI’,_, (35)

Ag; being the incremental strain. The vector "R, ~ “F, is called the unequilibrated nodal force
vector at the beginning of the step. The labels “~" and “ +* will further be used referring to
values of functions at the beginning at the end of the time step considered.

It is important to realize that in nonlinear analysis eqn (3.1) represents a linear ap-
proximation to the actual system behaviour in each time step. Depending on the nonlinearities
in the system and the magnitude of the time step At, the linearization may introduce severe
drift-away errors and, in some cases, solution instability. Therefore, eqn (3.1) should be in
general augmented by an iterative procedure. This is a crucial factor in evaluating all the
existing computational algorithms leading ultimately to eithér the initial load or Newton-
Raphson formulations. To discuss this issue more closely we rewrite eqn (3.1) as

KArs=AR,+ " R,-"F,- " K%Ar, (3.6)

This form of the equilibrium equation suggests clearly an iteration scheme to be used for its
solution; to see this it is enough to rewrite eqn (3.6) as

K9 Ar® = AR, + R, - "F, - "K3Ar*? (€})]
or, denoting
JOP ="K AP (€X)
as

K@ Ar®=AR+ "R~ F,=JP*". 39
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In fact the initial load term J?*~" can be easier accounted for in the computer program if we
represent it as

I?Xk»l).ﬂ, - Z ] Bi;’a Lf;k)t Aeg)(k-i}dv (31(})
elem. J Ve,
where
A = 4P At (3.11)

is the incremental plastic strain. Now, this strain can be computed within the iteration loop
according to the relations (2.19) or {2.35); the initial strain and initial stress schemes are then
recovered, respectively. Equations (2.19) and (2.35) are most effectively utilized if we transform
them to the form [25]

+ (k) - 4+ Ky~
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where
1
oy = ‘50‘3‘;( (3.14)
is the hydrostatic pressure,
+5H = (§ + D0 +0.,£?<k))’/2 615
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Expressions (3.12) and (3.13) are formed on the basis of the state at the beginning of the step;
the analogous expressions based upon continuously updated reference state need not be
recalled. It should also be noted that in deriving eqns (3.12) and (3.13) some terms have been
assumed negligible to[25]. The residual vector after mth iteration is defined as

RUthy= AR, + "R, = AJP*™ - KG] Arg" (.17
upon which a convergence criterion can be imposed in the form

Rﬁ res
IRl

for instance. If “m” is the number of the last iteration needed to satisfy the condition (3.18)
then R{%., is taken as the unequilibrated internal force vector for the next step, eqn (3.1).

Let us now pass to the short discussion of the Newton-Raphson iteration scheme. To this
aim we rewrite original equilibrium equation (3.1) as

<*“‘tolerance™ (3.18)

KU 8% = *R, = "F, = AP0~ p 704D (319
where

AJEXRD 5 KO Ap D, (3.20
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5r.¥ = kth correction to the incremental displacements so that after kth iteration the kth
approximation to the incremental displacement vector reads

r® = 2 or?, sr"=mAr, seeeqn(3.1)

i=1

while K, is a stiffness matrix to be specified later. The vectors ~F, and AJ #**~" are defined by
eqn (3.4) and eqn (3.10) while the vector AJ**? is given by

AJ(eXk L} - z I |" + :'(k l)dV % J' B‘hL(e) ("'"dV. (3.21)
Veiem. ele!

Equation (3.19) allows to define the current internal force vector as
*FoV="F, + AT D 4 AJ XD (.2

which, on account of eqns (3.4), (3.10) and (3.21) becomes

Fah= 2 { jv Bjo [0y + Ligh (Aeli™ - Aeﬁ:*“"’)]dv} (3.23)
e elem.

=3[ Butotvav.
m. J Ve,

The equation describing the Newton-Raphson iteration takes the final form
K. 81 ="R,~*F* (3.24)

in which *Fﬁ,"f" is the vector of internal nodal point forces equivalent to the element stresses at
the end of the step after the (k —1)th correction. The matrix I&,,,, is formed in the program
anew either at each iteration (“full” Newton-Raphson iteration) or at the beginning of the step
only (modified Newton-Raphson iteration), according to the definition

Ky =K9+K® . (3.25)

=0

pu=0

This choice assures: (a) good convergence properties of the iteration even for advanced plastic
flow and (b) no problems with the “non-symmetric” stiffness terms resulting from the existence
of the parameters 8 and p in the elastic-plastic constitutive equation. The effects of “non-
symmetry” of the problem formulation are entirely accounted for at the stage of constructing
the internal force vector *F%, see eqn (3.23). Some other details of the numerical procedure
are given in [25].

4. BOUNDSTOPRIMARY BIFURCATION STATE

Consider a hypoelastic solid obtained from the J-elastic-plastic solid by putting a = 1, see
eqn (2.7). This hypothetical solid is routinely referred to as the Hill's linear comparison solid,
{1,2]. It is well known [4], that the first eigenstate for this solid (i.e. such a state for which a
non-trivial solution is possible for the associated homogeneous rate problem) may often be
identified with some bifurcation state for the underlying elastic—plastic solid, since the actual
bifurcation mode for the latter can be determined by forming an appropriate liner combination
of the eigenmode and the fundamental solution. The Hill's theory of bifurcation has been
recently generalized to include a non-associated fiow law [26]. Two kinds of comparison solids
have been proposed. The first is a one-parameter family of linear solids that admit a potential
and have the property that if uniqueness (i.e. no bifurcation) is certain for the comparison solid
then bifurcation is precluded for the underlying elastic~plastic solid. The bifurcation point
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found for such a comparison solid gives in this way a lower bound to the ordinarily unknown
magnitude of the primary bifurcation for the solid with non-associated flow rule (without
potential).

The second comparison solid has been introduced in [26] in analogy to the Hill's “no
unloading™ solid and can be obtained from the genuine elastic~plastic solid by putting & = 1 in
eqn (2.29). The first eigenstate of such a comparison solid gives an upper bound to the primary
bifurcation state of the underlying elastic-plastic solid with non-associated flow rule.

The comparison solids are of great practical importance as they allow to replace the search
for the genuine primary bifurcation by a search for upper and lower bounds corresponding to
the bifurcation points in solids which are analytically more simple to describe.

Let us now have a closer look at the first kind of non-associated plasticity comparison
solids. The one-parameter family of such fictitious solids is defined by the constitutive equation
of the form

6" (e I:;,'u du (4 1)

Lo =L~ 4’,{* (sii+ rs)sk+ rsh) -5 (O’-k Bjt + oy 8y + 8y 8y + 7y 8y) 4.2

where the scalar parameter » is assumed to be positive. As shown in [26], the basic practical
meaning of this fictitious comparison solid rests upon the fact that bifurcation of an elastic-
plastic body cannot precede primary bifurcation of the comparison body. Furthermore, the
constitutive relation for the comparison body is not only linear but admits the potential which
has the same structure as the corresponding potential for the elastic—plastic body obeying
normality. It is also worthwhile to note that the tensor that specifies the direction of the plastic
strain rate is for the comparison body replaced by (s} + r s3)/2+/r. Therefore, the methods of
analysis of bifurcation (the appropriate computer programs, in particular) that have been
developed so far for elastic~-plastic solids obeying normality may now also be used to determine
the lower bounds to bifurcation states in solids with a non-associated flow law, The questions of
accuracy of such bounds and of the choice of the parameter r still remain to be answered. In
general, however, the parameter r which can be a function of particle position should be
optimized in every specific situation to give the bound closest, in some sense, the primary
bifurcation state of the genuine solid.

In order to take into account in the computational procedure the comparison solid defined
by egns {4.1) and {4.2) we note that now

5= %(3 L4rsd) 43)
and
3
dif’ == 7 Su (Su 6u) = f ;:/: 150 %“V# 44

It is readily seen that to obtain a code capable of dealing with the “symmetric” comparison
sohd from the program designed for the non-associated plasticity analysis it is enough to replace
m; by euﬂ +r/2ur) and B and p by (B + ruf2V'r). Carrying out the bifurcation analysis with
such a modified program we obtain the results which should give a lower bound to the
bifurcation state of the genuine solid.

Now, in order to get an upper bound to the primary bifurcation states in non-associated
plasticity problems we simply use the hypoelastic solid defined by eqns (2.6) and (2.7) with
& = 1 {(*no unloading™ comparison solid). The first eigenstate of this solid is the upper bound to
the primary bifurcation state of the elastic—plastic solid. The numerical implementation of the
constitutive equation for such comparison solids is straightforward as it suffices to merely
exclude the unloading branch from the origninal formulation.

5. RESULTS AND DISCUSSION

The computational algorithm developed in the previous section has been implemented into
the computer system LARSTRAN and used for a detailed study of the circular cylindrical bar
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in uniaxial tension enforced by afi ‘axial displacémient rate prescribed at the enids of the bar. The
geometric data for the problem are given in Fig. 1; the material properties are: E =2.1- 10¢,
v=03, 0,=20-10°, Ramberg-Osgood hardening curve of the form &=
(1.1 a/mE) [(o21.1 0™ = (1/1.1)™), m = 8. The uniform finite element idealization by means
of 256 TRIAX 3 elements is also shown. In each calculation to be discussed below the overall
elongation of 0.225 times the initial specimen length is imposed in 300 equal steps of prescribed
displacements of the ends so that finally the engineering strain of €, = (300 x 0.03/40) = 0.225
is achieved. The boundary value problem is posed in two ways: in one the ends are assumed to
be cemented to rigid grips, while in the other they remain shear free. A bifurcation from a state
of uniform tensile stress occurs with the latter end-condition only. Nevertheless, we start with a
short discussion of the results obtained for the bar with the built-in ends.

The specimen is first analysed within the framework of the flow theory. Curve of the
resultant reaction R versus prescribed displacement u, the development of unloading zones
with the increasing deformation and the gradual reduction of the cross-section area at neck are
shown in Fig. 1. It is noted that in contrary to the results given in [6] the whole specimen goes

A
R*=R/2»-10*
25 1
24 solution for non-porous
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Fig. 2. Necking of a cylindrical specimen with built-in ends-—Gurson’s theory for K = 0.001, fo= 0.00.
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plastic before it starts to unload. In other words, no region remains elastic throughout the entire
range of straining. Furthermore the unloading starts at distinctly smaller strains than those
accompanying the maximum load point. As expected, no sudden change in the slope of the
cross-section reduction curve is observed. .

The calculations are next repeated for the porous material assuming K = 0.001, eqn (2.16),
and no initial voids in the material, fo = 0.00. The resultant reaction vs prescribed displacement
curve obtained for such a material is compared against the previous curve in Fig. 2. The
development of porosity in the neck at the element 1 {near the axis of the bar) and at element 16
(near the lateral surface of the bar), Fig. 1, are also shown.

The next example is that of the bar with shear-free ends analysed within the framework of
the J-flow theory, Fig. 3. The curve C@ corresponds to the bar with perfect geometry while the
curve C1 is obtained by assuming an initial mid-cross-section reduction of 0.5%. The first

4 RERf21-10¢
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22+ max load - bifurcation . c2
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Fig. 3. Necking of a cylindrical specimen with simply supported (shear free) ends—J-flow theory and the
corresponding Hill's comparison solid {no unloading).
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unloading point on the curve C1 is clearly identified as the primary bifurcation point for the
Jrelastic-plastic material. At about the same deformation the area of the neck starts to
decrease much more rapidly as compared against the perfect geometry specimen.

Now, the calculation for the bar with the slight geometric imperfection is repeated assuming
the Hill’s “no unloading” comparison solid. On the so-obtained characteristic curve C2 the
bifurcation point is approximately identified. In accordance with the properties of the J--
elastic-plastic material this point should coincide with the bifurcation point in the genuine
elastic-plastic material, but this is confirmed by the present numerical calculations only
approximately. However, it should be stressed that the way the branching point is effectively
identified may contribute significantly to its final location along the equilibrium curve. In
particular, the bifurcation point for the comparison solid in this case owes its location to the
fact that the solution for the “no unloading™ solid follows closely the fundamental curve C@ in
the post-bifurcation range of deformation which makes a clear distinction of this point difficult. In
the present approach it is done by assuming an a priori threshold value of 0.001 - R* for the
difference between the normalized reactions of both the fundamental and imperfect solutions.
With all these reservations the imperfection-type approach to the bifurcational problems via the
comparison solid concept seems to yield an interesting information as the effective inclusion of the
unloading criterion in some numerical analyses can turn out troublesome.

The distribution of stresses at neck for two different stages of the process in the Jrmaterial
are shown in Fig. 4 (for the perfect specimen—the fundamental solution) and in Fig. 5 (for the
imperfect specimen). It is seen that the peak stresses in the latter case are on the axis of the bar
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Fig. 4. Stress distribution at mid-cross-section for € =0.180 and € =0.225, perfect non-porous elastic-
plastic specimen (curve C#, Fig. 3).
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Fig. 5. Stress distribution at mid-cross-section for € =0.180 and e = 0.225, imperfect non-porous elastic~
plastic specimen (curve C1, Fig. 3).

which confirms the results of [6] and contradicts those given in {13). The peaks become
accentuated as necking proceeds. The two next comparisons, Figs. 6 and 7, are made for
equivalent and hydrostatic stresses at neck. This is followed by the equivalent plastic strain
distribution shown in Fig. 8.

Now, we pass to a detailed analysis of the necking process in the porous elastic~plastic
material. All the analyses are carried out for specimens with the perfect geometric shape and
the shear-free ends. Imperfections are introduced into the problem by assuming the existence
of initial, non-uniform void distributions. The following notation is used in Fig. 9:

C#—fundamental solution for the J-flow theory without voids,

Cl—fundamental solution for elastic-plastic void-containing material imperfections,

C2—solution for elastic-plastic void-containing material, K = 0.001, initial porosity fo = 0.01
at elements 1-16, Fig. 1,

C3—solution for elastic-plastic void-containing comparison material, (“no unloading™),
K =0.001, initial porosity fo = 0.01 at elements 1-16,

- perfect elastic-plastic
specimen (curve CO, Fig.3)

—=w jmperfect elastic-plostic
specimen (curve Cl, Fig.3)
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Fig. 6. Equivalent stress distribution at mid-cross-section for € = 0.180 and € = 0.225, perfect and imperfect
non-porous elastic-plastic specimen.
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Fig. 7. Hydrostatic stress distribution at mid-cross-section for € = 0,180 and ¢ = 0.225, perfect and imper-
fect non-porous elastic-plastic specimen.
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Fig. 8. Equivalent plastic strain distribution at mid-cross-section for ¢ = 0.180 and € = 0.225, perfect and
imperfect non-porous elastic-plastic specimen.

C4—solution for elastic-plastic void-containing comparison material (“symmetric”, r = 1),
K =0.001, initial porosity at elements 1-16. This solution has been obtained by carrying out the
calculations for the genuine void-containing material and testing for branching at subsequent
equilibrium points by solving each time additionally the incremental problem with the “sym-
metric” comparison solid and assuming a threshold value for the difference in the incremental
solutions,

B,, Bs, Be—conjectural bifurcation points for problems characterized by the curves C2, C3,
C4,

M-—maximum load point.
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Fig. 9. Necking of a cylindrical specimen with simply supported (shear free) ends—Gurson's theory and the
corresponding comparison solids.

It is seen from Fig. 9 that the development of the deformation process for the porous bar is
essentially similar to that observed in the non-porous bar. The piont B, is identified as the point
at which unloading begins. At about the same point the sudden change in the slope of the
cross-section reduction curve is clearly visible, Fig. 10. The significant increase in porosity is
seen in Fig. 9 for the case of the localized plastic flow; no such effect accompanies the
non-localized solution.

The points B, and B, are obtained on the basis of the Raniecki’s comparison solids. As it is
clearly seen from Fig. 9 the bounding analyses give very good estimates to the primary
bifurcation point in the genuine porous material. The optimization of the lower bound is
discussed later. The subsequent figures deal with the neck distribution of stress components,
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Fig. 10. Reduction of the mid-cross-section for the imperfect porous specimen (curve C2, Fig. 9).

Fig. 11, equivalent stress Fig. 12, hydrostatic stress, Fig. 13, equivalent plastic strain, Fig. 14
and porosity, for both perfect and imperfect porous elastic-plastic specimens.

As we pointed out in Section 4, the closeness of the lower estimate to the primary
bifurcation point depends very strongly upon the choice of the parameter r entering the
constitutive equation for the comparison solid. A number of test calculations has been carried
out each time with different value of the parameter r; r was assumed constant throughout the
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Fig. 11. Stress disribution at mid-cross;section fro ¢ = 0.180, perfect and imperfect porous elastic-plastic
specimen.
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Fig. 12. Equivalent stress distribution at mid-cross-section for € =0.180, perfect and imperfect porous
elastic-plastic specimen.

—— fundamentol solution
for porous solid,
{curve Ci, Fig. 9}

. - "imperfect” solution
LR tor porous solid
“o {curve €2, Fig.9)
08
o7
06
e ————

05 o -
04 . : , -

) .25 050 075 .00 7478

Fig. 13. Hydrostatic stress distribution at mid-cross-section for €= 180, perfect and imperfect porous
elastic-plastic specimen,

EP
040}
—— —— p— —
T ~de:0180
asot
az0}
€:0180
010}
000 -

Fig. 14. Equivalent plastic strain distribution at mid-cross-section for ¢ = 0.180, perfect and imperfect
porous elastic-plastic specimen.
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Fig. 15. Porosity distribution at mid-cross-section for € =0.180, perfect and imperfect porous elastic-
plastic specimen.

whole plastic region, though. The displacements at the bifurcation for different values of r are
shown in Fig. 16. It is seen that the best lower bound is given by the “symmetric” comparison
solid with r = 0.9.

6. CONCLUSIONS

(1) Analysis of the bifurcation phenomenon by means of the direct integration approach
known in classical plasticity has also turned out operative for void-containing materials.

(2) The Gurson's theory applied to the axisymmetric necking of the porous specimen seems
to yield results which are qualitatively reliable.

(3) The finite element incremental approach combined with the Newton-Raphson iteration
and the consequent definitions of the initial strain expressions seems to be very well suited for
the analysis of large deformation non-associated plasticity problems.

(4) The concept of the linear comparison solids introduced recently for the analysis of
non-associated plastic flow seems to offer a very effective tool for obtaining reliable lower and
upper bounds to the primary bifurcation states.

Detailed analysis of the sensitivity of the bifurcation predictions to the material and
geometry imperfections is postponed to a forthcoming paper.
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Fig. 16. Influence of the parameicr r on the estimation of the bifurcation point by means of the
“*symmetric” comparison solid.



210 M. KLEIBER

1
2

1>

w

10.
11.

12.

13.
14.

REFERENCES

. R Hill, A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Sol. 6, 236-249 (1958).

. R. Hill, Bifurcation and uniqueness in nonlinear mechanics of continua. Problems of Continuum Mechanics, pp.
155-164. S.1.A.M. Philadelphia (1961).

. J. P. Miles, Bifurcation in plastic flow under uniaxial tension. J. Mech. Phys. Sol. 19, 89-102 (1971).

. J. W. Hutchinson and J. P. Miles, Bifurcation analysis of the onset of necking in an elastic-plastic cylinder under
uniaxial tension. J. Mech. Phys. Sol. 22, 61-79 (1974).

. S. Y. Cheng, S. T. Ariaratnam and R. N. Dubey, Axisymmetric bifurcatiqn in an elastic-plastic cylinder under axial

load and latera! hydrostatic pressure. Quart. Appl. Math. 29, 41-51 (1971).

A. Needleman, A numerical study of necking in circular cylindrical bars. J. Mech. Phys. Sol. 20, 111-127 (1972).

. A. Needleman and V. Tvergaard, Necking of biaxially stretched elastic-plastic circular plates. J. Mech. Phys. Sol. 28.
159-183 (1977).

. V. Tvergaard, Bifurcation and imperfection—sensitivity at necking instabilities. ZAMM 60, T26-T34 (1980).

. J. W. Hutchinson, Plastic buckling. Advances in Applied Mechanics (Edited by C. S. Yih), Vol. 14, pp. 67-144

(1974).

J. W, Hutchinson, Imperfection sensitivity in the plastic range. J. Mech. Phys. Sol. 21, 191-204 (1973).

V. Tvergaard, Buckling behaviour of plate and shell structures. Proc. 14th Cong. Theor. Appl. Mech. (Edited by W. T.
Koiter), pp. 233-247 (1976).

J. R. Osias and J. L. Swediow, Finite elasto-plastic deformation—I. Theory and numerical examples. Int. J. Solids.
Structures 10, 321-340 (1974).

W. H. Chen, Ncecking of a bar. Int. J. Solids. Structures 7, 685-717 (1971).

R. M. McMeeking and J. R. Rice, Finite element formulations for problems of large elastic-plastic deformation. Int. J.
Solids Structures 11, 601-616 (1975).

. J. H. Argyris and M. Kleiber, Incremental, discretized formulation in non-linear mechanics and finite strain elasto-

plasticity-—natural approach, Part I. Comp. Meths. Appl. Mech. Engng 11, 215-247 (1977).

. M. Klieiber, J. A. Konig and A. Sawczuk, Studies on plastic structures: stability, cyclic loadings, anisotropic hardening.

Proc. FENOMECH 81, University of Stuttgart, also: Comp. Meths. Appl. Mech. Engng (1982).

. J. W. Hutchinson, Finite strain analysis of elastic-plastic solids and structures. Num. Sol. Nonlinear Struct. Problems

(Edited by R. F. Hartung) ASME, 17.

. Z. Mréz, On forms of constitutive laws for elastic-plastic solids. Arch. Mech. Stos. 18, 3-35 (1966).
. A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth—I. Yield criteria and flow rules for

porous ductile media. J. Engng Materials Tech. 99, 2-15 (1977).

. A. L. Gurson, Porbus rigid-plastic materials containing rigid inclusions—yield function, plastic potential, and void

nucleation. Proc. Int. Conf. Fracture (Edited by D. M. R. Taplin), Vol. 2A, pp. 357-364 (1977).

. H. Yamamoto, Conditions for shear localization in the ductile fracture of void-containing materials. Int. J. Fract. 14,

347-365 (1978).

. A. Needleman and J. R. Rice, Limits to ductility set by plastic flow localization. Mech. Sheet Metal Forming (Edited by

D. P. Koistinen and N.-M. Wang) pp. 237-264 (1978).

. C-C. Chu and A. Needleman, Void nucleation effects in biaxially stretched sheets. MRL E118, Brown University

(1979).

. V. Tvergaard, On localization in ductile materials containing spherical voids. Int. J. Fracture 18, 237-252 (1982).
. J. H. Argyris and M. Kleiber, Finite elements in non-associated plasticity—axisymmetric necking in void-containing

materials. Comp. Meths. Appl. Mech. Engng (1982).

. B. Raniecki and O. T. Bruhns, Bounds to bifurcation stresses in solids with non-associated plastic flow law at finite

strain. J. Mech. Phys. Solids 29, 153-172 (1982).



